If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33j^2+7j=0
a = 33; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·33·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*33}=\frac{-14}{66} =-7/33 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*33}=\frac{0}{66} =0 $
| 20x-30=40+30-20x | | 1/2x+1/4=-2/3 | | 88-2h=6h | | 12x+8=6x-8 | | 6(q-)=12q-48 | | 5x+2-4=4(3x-6)-3(x+1)-3 | | 7(a–10)=13–2(2a+3) | | -10(x+2)=64 | | -x=5.5 | | -6/5+1/3y=-3/4 | | 7y-3=3y-2 | | h-78/6=2 | | 3b+2=b-5 | | 10+5m=60 | | N(x)=7 | | 4-9(-2x-3)=-5(-2x+3)-2 | | 0,056*(-108*x+27*x^2+8)=0 | | 4x=7x-36 | | x-0.25x=60 | | x+0.25x=60 | | 8x+3=7(x-1) | | 7+13x=95° | | 3y=53 | | 2(4x+4)=3(2+3x) | | X+1/3x+6=74 | | c-82/2=5 | | Wx5=55 | | 2x+30=75 | | 4n+9-2nn=5 | | 18x+7=11x-1 | | 3=5–2t | | b-29/7=6 |